
F O A M L A N D S E C U R I T Y

dominic doty & colton crivelli

An Automated Nerf Targeting System

Mechanical Engineering
Dr. John Ridgely

California Polytechnic State University
San Luis Obispo

C O N T E N T S

i design 1

1 introduction 2

1.1 Background Information 2

1.2 Design Motivation 2

1.3 Target Customer Description 3

2 specifications 4

3 hardware design 5

3.1 Brainstorming 5

3.2 Solid Modelling 6

3.3 Simulation 8

3.4 Optical Assembly 9

3.5 Electrical Hardware 11

3.5.1 Microcontroller 11

3.5.2 Encoder Front End 12

3.5.3 Motor Driver 13

3.6 Manufacturing 14

4 software design 16

4.1 Ideation 16

4.2 Task Diagram 16

4.2.1 Task Seekill Finite State Machine 17

4.2.2 Task Control FSM 20

ii results 22

5 results 23

5.1 Specification Evaluation 23

5.2 V2 23

5.2.1 Mechanical Design 24

5.2.2 Electrical Design 24

5.2.3 Sensor Design 25

5.2.4 Program Design 25

iii appendix 26

a code 27

a.1 Task Seekill 27

a.2 Task Control 37

a.3 Class PID 42

a.4 Class Encoder 45

a.5 Class Motor 51

a.6 Class ADC 55

ii

L I S T O F F I G U R E S

Figure 1 Foamland Security 2

Figure 2 Brainstorming Design Sketch 6

Figure 3 Isometric Solid Model Rendering 7

Figure 4 Bottom Solid Model Rendering 8

Figure 5 Simulink Closed Loop Model 8

Figure 6 Simulink Closed Loop Step Response 9

Figure 7 Optical Assembly Attached to Nerf Gun 10

Figure 8 Line Scanner Phototransistor Assembly 10

Figure 9 Demonstration of the Optical Assembly 11

Figure 10 Optical Encoder Quadrature Head 12

Figure 11 Comparator Noise Acceptance 13

Figure 12 Encoder Signal Conditioning Circuitry 13

Figure 13 Laser Cutter Manufacturing 14

Figure 14 Completed Foamland Security Assembly 15

Figure 15 Ideation Task Diagram 17

Figure 16 Task Diagram for Foamland Security 17

Figure 17 Finite State Machine of Task Seekill 20

Figure 18 Finite State Machine of Task Control 21

iii

A C R O N Y M S A N D A B B R E V I AT I O N S

IC Integrated Circuit

IR Infrared

FSM Finite State Machine

PWM Pulse Width Modulation

ALTI Altitude Axis

AZIM Azimuth Axis

RTOS Real Time Operating System

ADC Analog to Digital Converter

LPF Low Pass Filter

CP California Polytechnic

iv

Part I

D E S I G N

1
I N T R O D U C T I O N

Figure 1: Foamland Security.

1.1 background information

Foamland Security represents one creation out of many spawned
from the Winter 2015 ME405 Learn By Dueling Challenge. The basic
goal is to create an autonomously controlled, IR sensing, PID con-
trolled Nerf turrent. The primary objective is to be able to hit an IR
lamp quicker than any single opponent.

1.2 design motivation

A primary difference between Foamland Security and other dueling
appartus is that Foamland Security was designed to be kept by its

2

1.3 target customer description 3

creators. As a result, instead of using the standard ME405 board for
brains, Foamland Security runs off an Atmega2560, as well as self-
purchased brushed DC gear motors, custom encoders, and a 12V
power supply, much of which can be seen in Figure 1.

1.3 target customer description

The primary customers are ourselves because we are keeping Foam-
land Security and we are the individuals that benefited from its cre-
ation by learning. As a result much of what was done and the ap-
proach to how it was done was decided by what we felt we would
benefit from learning how to do.

Dr. Ridgely represents a secondary customer because he gives us a
grade, which is supposed to matter to us.

2
S P E C I F I C AT I O N S

The table below depicts the specifications that Foamland Security was
intended to meet:

Specification Justification

Must have PID control over
two axes

Two axis control is necessary
to successfully target the heat
lamp

Must sense IR IR sensing is necessary to be
able find the heat lamp

Must use a lens Specified by Dr. Ridgely to in-
crease chances of success

Must use gears or belts Specified by Dr. Ridgely

Must use a RTOS RTOS is an appropriate tool
for this task and a core con-
cept of ME405

Must use tasks Tasks are a core concept of
ME405

Must operate autonomously A primary objective of learn
by dueling is to have a closed
loop system

Must autonomously locate,
shoot at, and hit target

Overall goal of Learn By Du-
eling

4

3
H A R D WA R E D E S I G N

The mechanical design of "Foamland Security" was chosen with sim-
plicity, robustness, and performance in mind. The apparatus achieves
this through use of simple, laser cut plywood pieces and brushed DC
gear motors.

3.1 brainstorming

Foamland Security needed to orient itself to point any direction in
3d space. This requirement immediately pointed the design develop-
ment in the direction of telescopes. Telescopes are easily oriented to
point at any area of the sky accurately. Most telescope designs feature
an altitude mechanism, that moves the telescope from the horizon up
towards the sky, which is mounted on an azimuth mechanism that
sweeps the telescope across the horizon. To ease the loads on the
mechanism, the center of gravity of the telescope is almost always
located at the center of rotation of the altitude mechanism. Thus only
requiring the mechanism to overcome the moment of inertia of the
assembly. We considered this arrangement ideal for the Nerf turret.

Since the apparatus would only be required to rotate through less
than 180

◦ in each axis, high torque was considered to be of the ut-
most priority. To achieve this, the final drive on each axis is geared.
Multiple options for gearing were considered, but only belts and spur
gears were considered appropriate options. Spur gears require care-
ful alignment, are noisy, and expensive. On the other hand, belts are
less sensitive to misalignment, are quiet, and can use smaller diam-
eter pulleys due to smaller tooth size. Belts are the ideal choice, but
due to time considerations, we could not order closed timing belts
and instead opted for spur gears.

The target for Foamland Security was a small automotive lamp. We
selected infrared phototransistors to locate the lamp. In competition,
the gun would start facing 180 degrees away from the lamp, while
the lamp was at an unknown altitude. In order to sense and target the
lamp as quickly as possible, our initial brainstorming yielded a line
scanner that moved independently of the rest of the mechanism. The
scanner would spin at around 60 rpm taking readings on a line of 16

phototransistors. After a calibration to background levels, the scanner
would find any differences in its IR surroundings almost instantly. It
would then transmit the location of the lamp to the motion control
module, which would target the lamp as quickly as possible. A sketch
of the original design is shown in Figure 2.

5

3.2 solid modelling 6

Figure 2: Brainstorming Design Sketch.

3.2 solid modelling

To fully understand the proportions and layout of the assembly, we
made a solid model. The model includes all laser cut panels modelled
as solid pine. This proves to be a good approximation of the 5mm
plywood used to build the real turret. The Nerf gun was roughly
modelled from a scaled picture, and its center of gravity and weight
checked against the real gun to ensure accuracy. The turret assembly
was laser cut from three sheets of 18" by 32" 5mm underlayment. This
material was selected because of its consistent thickness, pleasing sur-
face finish, and laser compatibility.

The assembly was designed to be assembled purely with wood
glue using tab and slot construction. This yields a strong and low
cost structure. Figure 3 shows a Solidworks rendering of the design.
The altitude assembly of the gun was designed with the gun’s cen-
ter of gravity located at the center of rotation. The center of gravity
of the entire gun and altitude assembly was aligned to the center of

3.2 solid modelling 7

Figure 3: Isometric Solid Model Rendering.

rotation of the azimuth axis. All axis alignments were constructed
in Solidworks such that they automatically updated, ensuring align-
ment through every part of the design. Because the center of gravity
was aligned with the center of rotation, all motor torque is applied
to overcoming the moment of inertia of the assembly, yielding the
quickest angular acceleration possible for any motor-structure combi-
nation.

The structure also included built in optical encoders. The bottom
encoder can be seen in Figure 4, along with the quadrature read head
in grey. Note that the gear teeth are not rendered to expedite Solid-
works rendering. Because the assembly did not require precise po-
sitioning, a coarse laser cut encoder was added to the altitude and
azimuth gears. Laser cutting the encoder allowed for direct feedback
from each axis with no possibility of backlash whatsoever, along with
cost reductions. The cost reductions proved moot however, due to the
processing required to make the encoder signals usable, which will
be discussed in Section 3.5.2.

3.3 simulation 8

Figure 4: Bottom Solid Model Rendering.

3.3 simulation

One of the main goals of making a solid model of the system was to
find the moment of inertia of each of the rotating axes. This would al-
low the creation of a Simulink model to explore the effect of different
motors and gearing combinations on the system.

Figure 5: Simulink Closed Loop Model.

Figure 5 shows the Simulink model constructed to simulate the re-
sponse of closed loop control on a single axis. This allowed the test of

3.4 optical assembly 9

multiple gear ratios and motors to determine what the ideal combi-
nation would be. The moment of inertia used in the Simulink model
was calculated with Solidworks. The parameters used to simulate the
electric motor were calculated from its rated stall torque and no load
rpm, as well as its voltage and no load current. Using these, appropri-
ate values to simulate the motor were found. A motor was tested to
check that the predicted results were similar to the real motor perfor-
mance. The results were accurate, within reason considering the tight
development schedule of two weeks.

Figure 6: Simulink Closed Loop Step Response.

Figure 6 is a plot of two step inputs to a simple P only controller
on the azimuth axis. The step input was from 0 to 180

◦ and then back
to 0. We chose this as an appropriate input to the simulation because
it modelled the worst case scenario for the apparatus traversing at
high speed. The desired response was for the axis to only just achieve
its maximum angular rate before being required to decelerate to the
set point. Unfortunately, the gear motors purchased already had an
extremely high internal gear ratio, which almost removed the neces-
sity of gearing altogether. At this point, the whole mechanism would
have ideally been redesigned without gearing, but due to time con-
straints, we had to move ahead with the system as it stood. The lowest
gear ratio we could fit in the current mechanical design was 1:5. The
step response in Figure 6 shows the azimuth reaching its top speed
extremely quickly, travelling at constant rate to the set point. The
system still completes a 180

◦ turn in just over a second, but the per-
formance could be improved in future versions if a better gear ratio
was implemented.

3.4 optical assembly

The original independently rotating line scanner was abandoned due
to a few unforeseen complications. The main obstacle was the focal
length of the Fresnel lenses we selected. The focal length was much

3.4 optical assembly 10

longer than expected, and there was not enough room in the orig-
inal mounting location for the entire rotating optical assembly. An-
other major obstacle was the transmission of power to the optical
scanner. Power needed to be transmitted through the constantly ro-
tating joint to the internal electronics. While not difficult, it proved
to be too much added complexity in our short development sched-
ule. The largest issue however, was the misalignment between the
gun and the sensor. Because the gun and the optical scanner did not
rotate about the same point, the angle at which the gun and the op-
tical sensor would perceive the target was dependent on the distance
to the target. The combination of all these issues made the design
unacceptable.

Figure 7: Optical Assembly Attached to Nerf Gun.

The design was revised to mount the line scanner directly on the
gun, as shown in Figure 7. The new design featured 14 phototran-
sistors in a vertical line mounted inside a box with a Fresnel lens to
focus the light. The box was mounted to the Nerf gun’s dovetail ac-
cessory rail using a 3d printed part. This allowed the optical assembly
to be easily attached and detached from the gun for manufacturing.

Figure 8: Line Scanner Phototransistor Assembly.

3.5 electrical hardware 11

Figure 8 shows the line scanner itself and its 14 constituent pho-
totransistors and their current limiting resistors. All transistors were
powered from a single power wire, while each transistor had an in-
dependent sense and ground wire so that each transistor output was
a twisted pair. The board also had allowances LPF to be installed on
each transistor, but this was deemed unnecessary since the readings
would largely be averaged, overcoming any small interference.

Figure 9: Demonstration of the Optical Assembly.

Figure 9 demonstrates the optical assembly focusing light on the
phototransistors. The assembly was designed with the phototransis-
tor board mounted in slots, allowing the focus to be fine tuned dur-
ing testing. Once the optimal distance to the lens was determined,
the phototransistor board was permanently attached to the optical
assembly.

3.5 electrical hardware

3.5.1 Microcontroller

Most students in our class chose to use the ME405 microcontroller
board, which features an Atmel Atmega1281, two motor drivers, and
a variety of other supporting hardware. We decided that in order
to maintain full functionality of Foamland Security after the course
concluded, we would use a Arduino Mega, which utilizes an At-
mega2560 also from Atmel. The differences between the two ICs are
negligible, with the only serious difference being increased memory
size. The board was configured to run FreeRTOS with the accompa-
nying ME405 library.

3.5 electrical hardware 12

3.5.2 Encoder Front End

Figure 10: Optical Encoder Quadrature Head.

As mentioned in Section 3.2, we opted out of using commercial
encoders, and instead we laser cut encoder grating into the gears
and designed housings for an IR emitter and phototransistor to look
through the encoder grating as shown in Figure 10. While this was
well executed, various problems arose due to:

1. The chosen phototransistors

2. Noise from the H-bridge, motor, and power supply

3. The necessary signal integrity for a signal to be used as an in-
terrupt

The selected phototransistors induced small currents because of
their small viewing angle of 24

◦ and limited spectral range from 880

to 1120nm. The small currents resulted in signals more susceptible to
noise. This necessitated a LPF to clean the signal up. Because of the
extremely small currents involved, it was necessary to use a buffer
before any signal filtering could be attempted. After the buffer and
LPF were implemented, the signal was relatively smooth. Unfortu-
nately, the slowly varying analog signal from the phototransistor is
not compatible with microcontroller interrupts. A comparator had to
be added to create a clean square wave with low rise times. Due to
the noise and slow transitions of the encoder signal, the comparator
would often "bounce" as seen in Figure 11.

This issue was solved by switching the standard comparator with
a Schmitt trigger. The Schmitt trigger is similar to a comparator with

3.5 electrical hardware 13

Figure 11: Comparator Noise Acceptance.

unidirectional reference voltages. That is, a transition from low to
high is compared against one voltage, while a high to low transition
is compared against another, making it immune to lollygagging in
the digital grey area of 2 to 4 volts. The low to high transition point
was set at 4V and the high to low transition around 2V, solved this
issue. The final circuit is shown in Figure 12.

Figure 12: Encoder Signal Conditioning Circuitry.

3.5.3 Motor Driver

To drive the brushless DC gear motors, multiple H-bridges were con-
sidered. We first fabricated an H-bridge purely out of TO-220 MOS-
FETS. This was abandoned however because of the excessive size and
cost of the circuit, especially since the circuit could handle far higher
power than the motors demanded. We scaled back and instead used
a SN754410 Quad Half H-bridge from Texas Instruments. The board
can be used as two full H-bridges, capable of driving up to 36V and
1A continuously per channel from 5V logic levels. Each half H-bridge

3.6 manufacturing 14

was driven by a PWM pin, allowing 8 bit control of motor voltage in
either direction.

3.6 manufacturing

The whole assembly was manufactured either on the laser cutter in
the CP Mustang ’60 shop or on a Kossel 3d printer at our abode.
Figure 13 depicts the process of cutting one of the three panels of
parts that made up the device. Some small parts were also 3d printed,
including the encoder read heads, small braces, motor mounts, and
the optical mounting hardware. Overall, laser cutting the assembly is
a much better way to go about manufacturing than 3d printing the
entire thing. The geometry is almost entirely 2d, and the application
hardly demands anything fancy like helical gears.

Figure 13: Laser Cutter Manufacturing Foamland Security Parts.

The gun was affixed to the altitude axis using two zip ties. This
allowed for easy adjustments of the gun to ensure its alignment with
the axis. It also allows for complete disassembly of the altitude axis
for later adjustments and additions. Figure 14 shows a picture of
Foamland Security in its completed state.

3.6 manufacturing 15

Figure 14: Completed Foamland Security Assembly.

4
S O F T WA R E D E S I G N

The software design of Foamland Security was chosen with efficiency,
readability, and portablility in mind. This is achieved through the use
of a RTOS implemented on an Atmega2560, the use of tasks, and by
implementing FSMs within tasks.

4.1 ideation

The original sketch for sensing IR, as seen in Figure 2, depicts an
appartus capable of moving independently of the apparatus, imag-
ing the entire surrounding area. With this in mind we designed the
task digram seen in Figure 15. The idea is that the sensor senses the
exact position of the target, causing the azimuth and altitude motor
controls to work simultaneously to point the Nerf gun at the target,
while a task simultaneously checks for the moment that the target
is acquired (in task Targeting). However, this sensing appartus was
deemed too time intensive to implement so we opted to create the
sensing ciruit shown in Figure 7. With an attached sensing circuit the
azimuth and altitude postions must be determined sequentially. In
other words, the design of this sensing circuitry elimanted the needs
for separate altiude, azimuth, and targeting tasks in favor of a sin-
gle task that achieved the same functionality sequentially. The User
Task was also deemed superfluous as Foamland Security operates
autonomously, with the excpetion of the switches ’power,’ ’enable,’
’auto,’ and ’zero.’ In the final design these switches are how the user
interfaces with Foamland Security, rendering a task for user interfac-
ing unnecessary.

4.2 task diagram

Foamland Security only required two tasks— a control task and a
search and fire task, as seen in Figure 16. As previously mentioned,
Foamland Security only demands two tasks because much of the
work needs to be done sequentially.

It should be noted that the Task Diagram only depicts two vari-
ables for intertask communication. While these are the only two vari-
ables communicated from task to task, the task Control utilizes other
shared variables. For example, the encoder class is responsible for
keeping track of the current positions of both the azimuth and alti-
tude motors and storing them in shared variables. Similarly, the en-
coding class stores error and velocities as shared variables.

16

4.2 task diagram 17

Figure 15: Ideation Task Diagram.

Each task has the same priority but task Control is run every 10ms
whereas task Seekill is only run every 25ms. This was deemed desir-
able because when task Seekill tells task Control to move, nothing
can be done until task Control moves the Nerf gun to the desired
position.

Figure 16: Task Diagram for Foamland Security.

4.2.1 Task Seekill Finite State Machine

The FSM for task Seekill, seen in Figure 17, details how Foamland
Security searches for, and fires at, the target. The underlying basis is
that the IR sensing circuitry is a vertical line of 14 sensors, the first
state should seek to locate the target horizontally by averaging the
analog values returned by all 14 sensors. Once the analog volages
returned by the sensing circuity are averaged the state checks to see
if the current average value is greater than the past averaged values
and if it is, it stores it as the new peak value. Regardless of whether or
not the current averaged value is greater than the peak average value,
the next state that the FSM moves to is Move Azim, which moves

4.2 task diagram 18

the apparatus horizontally and then returns to Sense Azim to pro-
cess the new sensor readings. The FSM does this continuously until
it reads an analog voltage that is significantly less than the peak ana-
log voltage. This condition means that Foamland Security has passed
its target horizontally. This condition transitions the FSM from state
Sense Azim to state Sense Alti. The following snippet of code shows
the two cases used for sensing and moving Foamland Security hori-
zontally:

1 // state sense_azim reads sensors and compares to last readings

case (sense_azim):

{

uint16_t azim_average = average_all_ADC (); // calls

a function to avg all channels

6 // compares last sensor reading to current and stores the

highest

if (azim_average > peak_avg_a2d)

{

peak_avg_a2d = azim_average;

transition_to (move_azim);

11 }

// checks if there’s been a large drop off of IR because

this means we’ve passed the target!

else if (azim_average < (peak_avg_a2d - SIG_IR_DROP))

{

16 while (azim_average != peak_avg_a2d) // get

us back to our target

{

desired_azim_pos->put(current_azim_pos->

get() - 15);

azim_average = average_all_ADC();

// update ADC readings

delay_ms(10);

// allows us to

switch tasks and actually move

21 }

transition_to (sense_alti);

}

// if the sensors haven’t told us anything significant,

we keep on keepin’ on

26 else

{

transition_to (move_azim);

}

}

31 break; // end state sense_azim

4.2 task diagram 19

//

// state move_azim moves the azimuth motor and then sends us back

to sense_azim to keep checking IR

case (move_azim):

36 desired_azim_pos->put(current_azim_pos->get() + 15);

while ((current_azim_pos->get() < (desired_azim_pos->get

() - 4)) || (current_azim_pos->get() > (

desired_azim_pos->get() + 4)))

{

delay_ms(15); // twiddle your thumbs

}

41 transition_to (sense_azim);

break; // end state move_azim

Once Foamland Security believes it has passed its target it back-
tracks until it detects a voltage similar to the peak. Then it transitions
to Sense Alti where it scans all fourteen sensors to find the sensor
sensing the highest concentration of IR. Once located, the task Con-
trol is told to move Foamland Security to the target, after which the
FSM moves onto the firing sequence. The following sequence of code
shows how Foamland Security searches and moves to the target in
the altitude position:

// state sense_alti is entered when we’ve locked in horizontally

and now we need to find the target vertically

case (sense_alti):

3 desired_azim_pos->put(current_azim_pos->get()); // freeze

horizontal

alti_seek();

// a function that lock us

onto the target vertically

desired_alti_pos->put(current_alti_pos->get()); // freeze

vertically

transition_to (initiate_firing);

// begin shooting sequence

break; // end state sense_alti

The firing process spans three states to allow the flywheels in the
Nerf gun to get up to speed before the trigger can be ”pulled.” The
trigger must be ”pulled” for a time long enough to eject projectiles.
This sequence represents a challenge because as the RTOS idles in a
state within the firing sequence, the RTOS should not leave the cur-
rent task. In order to accomplish this a while loop was implemented
that used the tick counts as a condition for delay, rather than using
delay_ms(), which would have caused the RTOS to move to another
task.

It should be noted that both the states for scanning horizontally and
vertically use methods such as average_all_ADC () and alti_seek(),
which can be seen in Appendix A.

4.2 task diagram 20

Figure 17: Finite State Machine of Task Seekill (Pronounced Task Seek-Kill).

4.2.2 Task Control FSM

The task Control, seen in Figure 18, consists of three states: Check
Difference, Azim Power, and Alti Power. The state Check Difference
checks if there is a difference between the desired and current az-
imuth position and if there is, then it transitions to state Azim Power
where it sends the difference to an object of the PID class to deter-
mine the desired power to be sent to a method of an object of the
motor class that sets the appropriate motor’s power (by setting the
duty cycle of the PWM). After the azimuth motor speed has been up-
dated, the FSM transitions back to check difference. Once the azimuth
position has been aligned with the target, state Check Difference will
return an azimuth difference of 0 and then the altitude difference
will be checked and the altitude power will be similarly found and
set until Foamland Security finds the target. The source code for task
Control can be found in Appendix A and the following snippet of
code shows how the PID class works:

int16_t pid::action (int16_t diff)

{

3 int8_t isat = sat/Ki;

int16_t proportional = (diff*Kp);// calc proportional

factor

if (((diff > imin_diff) || (diff < -imin_diff)) && (act >

-sat) && (act < sat))

{

4.2 task diagram 21

8 iaccumulate += diff; // only occurs if

diff is substantial and if act is not

saturated (mitigates windup)

if (iaccumulate > isat) // further

mitigates windup

iaccumulate = isat;

else if (iaccumulate < -isat)

iaccumulate = -isat;

13 }

int16_t integral = iaccumulate*Ki;

int16_t derivative = (diff-prev_diff)*Kd;

18 act = proportional + integral + derivative; // calculate

desired output power

if (act > sat)

// ensures action isn’t larger than the

max power we can give the motor

act = sat;

else if (act < -sat)

23 act = -sat;

prev_diff = diff;

return act;

}

Figure 18: Finite State Machine of Task Control.

Part II

R E S U LT S

5
R E S U LT S

5.1 specification evaluation

The following table is a reiteration of the table from Chapter 2 with
an added Pass/Fail column.

Specification Justification Pass/Fail

Must have PID control over
two axes

Two axis control is necessary
to successfully target the heat
lamp

Pass

Must sense IR IR sensing is necessary to be
able find the heat lamp

Pass

Must use a lens Specified by Dr. Ridgely to in-
crease chances of success

Pass

Must use gears or belts Specified by Dr. Ridgely Pass

Must use a RTOS RTOS is an appropriate tool
for this task and a core con-
cept of ME405

Pass

Must use tasks Tasks are a core concept of
ME405

Pass

Must operate autonomously A primary objective of learn
by dueling is to have a closed
loop system

Pass

Must autonomously locate,
shoot at, and hit target

Overall goal of Learn By Du-
eling

Fail

The final product theoretically fully functions but in the process of
moving the encoder filtering circuit from a breadboard to protoboard,
one of the filtering circuits was damaged. This means that we had PID
control over either azimuth or altitude but we could not implement
control over both simulateously to show our ability to "autonomously
locate, shoot at, and hit the target." Despite this, Foamland Security
can display all of the desired functionalities separately.

5.2 v2

During the development and immediately following the completion
of Foamland Security, it became clear that many design decisions
were not ideal in V1. As with most designs, Foamland Security must

23

5.2 v2 24

go through another iteration to improve its utility. Since we bought
all the components ouselves, iterating on the current design seems al-
most inevitable to get a fully functioning prototype and improve the
shortcomings of V1. Here are the proposed changes.

5.2.1 Mechanical Design

The most obvious deficiency of the current mechanical design is in
the selected gear ratios. It reaches its maximum angular speed al-
most instantly, wasting much of the torque of the motors. In V2, this
would be corrected. The current design would have to be completely
overhauled to allow for a lower gear ratio than 1:5 however, as gears
with more similar diameters simply will not work with the design. To
solve this issue on the altitude axis, the gearing will be moved to the
internals of the altitude tower, and utilize a timing belt and pulleys.
The altitude encoder will also be omitted and a potentiometer will
be used in its place. In this application a potentiometer is a better
solution since it provides absolute position feedback, eliminating the
endstop switch required by the encoder. With the 10 bit ADC on the
Atmega 2560, this provides a resolution of 0.3◦. A potentiometer is
not a limiting option as the axis is not required to rotate more than
approximately 100

◦. The azimuth will continue with a custom laser
cut optical encoder, but the grating will be moved internally, so that
the read head will be completely hidden from view inside the lower
base. New phototransistors will be selected with higher currents, with
an amplifier placed immediatley adjacent to them to eliminate noise
issues. The azimuth drive will also be switched to timing belts and
pulleys, but mounted inside the encoder ring, so that the motor will
be mounted within the altitute box, hiding it from view as well. The
V2 assembly will be entirely more sleek than the V1 assembly, hiding
all mechanical aspects inside enclosures, and eliminating all exposed
wiring by running the Nerf gun control wires through the hollow
altitude shaft.

5.2.2 Electrical Design

The principal issue of V1 was the custom lasercut encoders. The low
currents of the phototransistors required somewhat complex filter-
ing and conditioning to produce the required square wave. This was
caused both by the low current of the phototransistors, as well as ex-
cessive noise from the brushed DC motors. To lessen both causes of
this problem, we must address both the motors and the phototran-
sistors. To improve the signals from the phototransistors, they will
be replaced by more sensitive ones and supplied by a higher volt-
age. An amplifier will be placed as close as physically possible to the
phototransistors to lessen the influence of any noise on the signal. To

5.2 v2 25

decrease the noise produced, the motors will be switched to brush-
less DC motors, with their drivers PWM driven through Darlington
transistors to lessen the current load on the Arduino linear regulator.
V2 will also feature a power slip ring connection to transmit power
through the azimuth joint. This allows the entire assembly to rotate
unhindered in any direction.

5.2.3 Sensor Design

To ensure the applicablility of Foamland Security to our college apart-
ment, the optical assembly will be abandoned in favor of machine
vision. As of yet, the specific system has not been selected, but likely
candidates are a Raspberry Pi or BeagleBone with a camera and
OpenCV, a C++ library of computer vision functions, or a standalone
module like OpenMV or Pixy. This will allow Foamland Security to
target and shoot individuals that are not bright sources of IR light.
In addition to machine vision control, a 2.4 GHz remote will also be
added, allowing an individual to manually aim and fire the turret, as
well as engage the automatic targeting mode.

Part III

A P P E N D I X

A
C O D E

a.1 task seekill

//

**

/** @file task_seekill.cpp

3 * This file contains a task class that senses the highest IR

light around, using 14

* ADCs, and lets the task class control know where it is

*/

//

**

#include <avr/io.h> // Port I/O for SFR’s

8 #include <avr/wdt.h> // Watchdog timer

header

#include " task_user .h" // Header for this

file

#include "shares .h"
#include "motordrive .h"
#include " task_control .h" // header for

task_control

13 #include " task_seekill .h" // header for

task_seekill

//

#define SIG_IR_DROP 400

// value that represents a significant drop in IR for sensing

#define NUM_ADC_CH 14

// number of ADCs our sensing circuitry uses

18

// enumerated type that allows descriptive names for states in

FSM

enum state_names_t {sense_azim = 0, move_azim = 1, sense_alti =

2, initiate_firing = 3, pull_trigger = 4, await_reset = 5};

//

23 //

27

A.1 task seekill 28

/** This constructor creates a task which initializes an enable

pin and creates a tast

* for sensing and shooting at our target.

* The main job of this constructor is to call the constructor

of parent class (\c frt_task);

* the parent’s constructor does the work.

28 * @param a_name A character string which will be the name of

this task

* @param a_priority The priority at which this task will

initially run (default: 0)

* @param a_stack_size The size of this task’s stack in bytes

* (default: configMINIMAL_STACK_SIZE)

* @param p_ser_dev Pointer to a serial device (port, radio, SD

card, etc.) which can

33 * be used by this task to communicate (default

: NULL)

*/

task_seekill::task_seekill (const char* a_name,

unsigned

portBASE_TYPE

a_priority

,

38 size_t

a_stack_size

,

emstream*

p_ser_dev

)

: TaskBase (a_name, a_priority, a_stack_size, p_ser_dev)

{

// pin H0 will be used to enable foamland security

43 DDRH &= ~(1 << 0);

}

//

void task_seekill::run (void)

// method called RTOS scheduler

48 {

TickType_t previousTicks = xTaskGetTickCount (); // holds

times to use for precise task scheduling

uint16_t peak_avg_a2d = 400 ;

// creates a variable to store

highest average

motordrive* azim_motor = new motordrive(1, DDB5, DDB6, &

OCR1B, &OCR1A, p_serial); // pins 11 and 12

PWMing

A.1 task seekill 29

53 motordrive* alti_motor = new motordrive(0, DDE3, DDE4, &

OCR3B, &OCR3A, p_serial); // pins 5 and 2

PWMing

for (;;)

{

bool EN = (PORTH & (1< PINH0));

// read the enable pin

58 while (EN != 1)

{

// twiddle thumbs

}

63 switch (state) // run FSM, ’state’ is kept

by parent class

{

//

// state sense_azim reads sensors and

compares to last readings

case (sense_azim):

68 {

uint16_t azim_average =

average_all_ADC (); //

calls a function to avg all

channels

// compares last sensor reading

to current and stores the

highest

if (azim_average > peak_avg_a2d)

73 {

peak_avg_a2d =

azim_average;

transition_to (move_azim)

;

}

78 // checks if there’s been a large

drop off of IR because this

means we’ve passed the target

!

else if (azim_average < (

peak_avg_a2d - SIG_IR_DROP))

{

while (azim_average !=

peak_avg_a2d) //

get us back to our

target

{

A.1 task seekill 30

83 desired_azim_pos

->put(

current_azim_pos

->get() - 15)

;

azim_average =

average_all_ADC

();

// update ADC

readings

delay_ms(10);

//

allows us to

switch tasks

and actually

move

}

transition_to (sense_alti

);

88 }

// if the sensors haven’t told us

anything significant, we

keep on keepin’ on

else

{

93 transition_to (move_azim)

;

}

}

break; // end state sense_azim

98 //

// state move_azim moves the azimuth

motor and then sends us back to

sense_azim to keep checking IR

case (move_azim):

desired_azim_pos->put(

current_azim_pos->get() + 15)

;

while ((current_azim_pos->get() <

(desired_azim_pos->get() -

4)) || (current_azim_pos->get

() > (desired_azim_pos->get()

+ 4)))

103 {

A.1 task seekill 31

delay_ms(15); //

twiddle your thumbs

}

transition_to (sense_azim);

break; // end state move_azim

108

//

// state sense_alti is entered when we’ve

locked in horizontally and now we

need to find the target vertically

case (sense_alti):

desired_azim_pos->put(

current_azim_pos->get()); //

freeze horizontal

113 alti_seek();

// a

function that lock us onto

the target vertically

desired_alti_pos->put(

current_alti_pos->get()); //

freeze vertically

transition_to (initiate_firing);

// begin shooting sequence

break; // end state sense_alti

118 //

// states initiate_firing through

await_reset are a firing sequence,

ending in an idle state

case (initiate_firing): // starts

nerf motor at full speed

firing (255, 0);

while (xTaskGetTickCount() !=

previousTicks + 400)

123 {

// build up motor

speed

}

transition_to (pull_trigger);

break; // end state

initiate_firing

128

//

A.1 task seekill 32

case (pull_trigger): // prevents motor

from firing too fast and pulls

trigger

firing ((255/2), (255/2));

while (xTaskGetTickCount() !=

previousTicks + 2000)

133 {

// fire

projectiles

}

firing (0, 0); // shuts off nerf

motor and trigger

transition_to (await_reset);

138 break; // end state pull_trigger

//

case (await_reset): // the gun

idles in await_reset until enable is

pressed and then we start again

while (EN == 1)

143 {

EN = (PORTH & (1< PINH0))

; // idle

victoriously until

services are re-

requested

}

while (EN != 1)

{

148 EN = (PORTH & (1< PINH0))

; // idle

victoriously until

services are re-

requested

}

transition_to(sense_azim);

break; // end state await_reset

}

153 }

delay_from_for_ms (previousTicks, (25));

}

//

158

uint16_t task_seekill:: average_all_ADC (void)

// method to average all 16 ADCs

{

A.1 task seekill 33

adc* p_my_adc = new adc (p_serial);

// create an object of adc to use in

this method

163 uint16_t average = 0;

// stores average ADC value

int8_t adc_channel = 0;

// determines which ADC

channel is read

bool round_two = 0;

// this for loop runs us through all 14 ADCs that our

sensor utilizes

168 for (uint8_t scanner = NUM_ADC_CH; scanner > 0; scanner

--)

{

if (adc_channel > 7)

// allows use of 2nd

chunk of 8 ADCs

{

round_two = 1;

173 adc_channel = 0;

}

average += p_my_adc->read_once(adc_channel,

round_two); // accumulates readings

adc_channel++;

}

178 return (average/NUM_ADC_CH);

// returns accumulated value divided by

number of readings

}

//

183 void task_seekill:: alti_seek(void)

{

adc* p_my_adc = new adc (p_serial);

int8_t adc_channel = 0;

188 bool round_two = 0;

bool max_round = 0;

uint16_t max_analog = 0;

uint8_t max_adc_channel = 0;

193 for (uint8_t num_adc_channels = 14; num_adc_channels > 0;

num_adc_channels--)

{

if (adc_channel > 7)

{

round_two = 1;

A.1 task seekill 34

198 adc_channel = 0;

}

// read the voltage on each phototranny, 1 by 1

uint16_t analog = p_my_adc->read_once(adc_channel

, round_two);

203

// allows us to store exactly which phototranny

saw the most IR

if (analog > max_analog)

{

max_analog = analog;

208 max_adc_channel = adc_channel;

max_round = round_two;

}

adc_channel++;

}

213

// a loop that runs until the barrel is pointing at the

target

while (p_my_adc->read_once(max_adc_channel, max_round) !=

max_analog)

{

desired_alti_pos++;

218 while (desired_alti_pos != current_alti_pos)

{

delay_ms(10); //twiddle your thumbs

}

}

223 // trigger->put(1); // "pulls" trigger

return;

}

//

228

void task_seekill:: firing(uint8_t motor_speed, uint8_t

fire_speed)

{

/* configuring pins H3 and H4 to serve as PWM pins for

the supply of the nerf

gun motor and for the gate of the FET controlling the

trigger*/

233

DDRH |= (1 << 3);

// pins H3 and H4 configured as outputs

DDRH |= (1 << 4);

TCCR4A |= (1 << WGM40); // configure 8

bit fast PWM

238 TCCR4B |= (1 << WGM42);

A.1 task seekill 35

TCCR4B |= (1 << CS42) | (1 << CS40); // set

prescaler for timer/counter at /64

TCCR4A |= (1 << COM4B1);

TCCR4A &= ~(1 << COM4B0);

243 TCCR4A |= (1 << COM4A1);

TCCR4A &= ~(1 << COM4A0);

// pins H3 and H4 PWM at a duty cycle that correlates to

the passed in variables

OCR4A = motor_speed;

248 OCR4B = fire_speed;

return;

}

//

**

/** @file task_seekill.h

* This file is the header for the task class sense.cpp that

read the ADC values

4 * from the sensing circuity and determines the location

that is getting the largest

* amount of IR light

*/

//

**

9 #ifndef _task_sense_h_

// prevents multiple inclusions

#define _task_control_h_

#include <stdlib.h> // prototype

declarations for I/O functions

#include <avr/io.h> // header for special

function registers

14

#include "FreeRTOS.h" // primary header for

FreeRTOS

#include " task .h" // header for

FreeRTOS task functions

#include "queue.h" // FreeRTOS inter-

task communication queues

19 #include " taskbase .h" // ME405/507 base

task class

#include "time_stamp.h" // class to implement

a microsecond timer

#include "taskqueue .h" // header of wrapper

for FreeRTOS queues

A.1 task seekill 36

#include " taskshare .h" // header for thread-

safe shared data

#include "shares .h" // global (’extern’)

queue declarations

24

#include " rs232int .h" // ME405/507 library

for serial comm.

#include "adc .h" // header for A/D

converter driver class

#include "encoderdriver .h"
// encoder initialization and interrupts

#include "pid .h"
// pid control and creation of encoder objects

29 #include "motordrive .h"
// motor initialization and power setting

#include "adc .h"
// motor initialization and power setting

//

/** @brief This class senses IR

* @details This class uses readings from 14 ADCs to locate the

largest source of IR lights

34 * in both the X and Y axis

*/

class task_seekill : public TaskBase

{

39 private:

// nothing as of right now

protected:

uint16_t average_all_ADC (void); // method to

average all 16 ADCs

44 void firing(uint8_t motor_speed, uint8_t fire_speed);

void alti_seek(void); // find

max analog altitude voltage and sets a bool

public:

// This constructor creates a generic task of which many

copies can be made

49 task_seekill (const char*, unsigned portBASE_TYPE, size_t

, emstream*);

// This method is called by the RTOS once to run the task

loop for ever and ever.

void run (void);

};

54

#endif // _task_sense_h_

A.2 task control 37

a.2 task control

//

**

/** @file task_control.cpp

* This file contains outlines a task that creates objects of

motordriver, encoder,

* and PID classes. Once all of these objects have been

created, it allows PID control

5 * of each motor that classes have been created for.

*/

//

**

#include <avr/io.h> // port I/O for SFR’s

#include <avr/wdt.h> // watchdog timer

header

10 #include " task_user .h" // header for this

file

#include "shares .h"
#include "motordrive .h"
#include " task_control .h" // header for

task_control

15 //

// enumerated type that allows descriptive names for states in

FSM

enum state_names_t {check_diff= 0, azim_power = 1, alti_power =

2};

//

20 /** This constructor creates a task which handles PID control

* The main job of this constructor is to call the constructor

of parent class (\c frt_task);

* the parent’s constructor does the work.

* @param a_name A character string which will be the name of

this task

* @param a_priority The priority at which this task will

initially run (default: 0)

25 * @param a_stack_size The size of this task’s stack in bytes

* (default: configMINIMAL_STACK_SIZE)

* @param p_ser_dev Pointer to a serial device (port, radio, SD

card, etc.) which can

* be used by this task to communicate (default

: NULL)

*/

30

A.2 task control 38

task_control::task_control (const char* a_name,

unsigned

portBASE_TYPE

a_priority,

size_t

a_stack_size,

emstream*
p_ser_dev)

35 : TaskBase (a_name, a_priority, a_stack_size, p_ser_dev)

{

ptr_serial_ctrl = p_ser_dev;

// allows communication

}

40

//

void task_control::run (void)

// called by RTOS scheduler

{

45 TickType_t previousTicks = xTaskGetTickCount (); // holds

times to use for precise task scheduling

// create objects for encoder, motordrivers, and pid

encoder* encoders = new encoder(p_serial);

motordrive* alti_motor = new motordrive(0, DDE3, DDE4, &

OCR3B, &OCR3A, p_serial); // pins 5 and 2

PWMing

50 motordrive* azim_motor = new motordrive(1, DDB5, DDB6, &

OCR1B, &OCR1A, p_serial); // pins 11 and 12

PWMing

pid* azim_control = new pid(p_serial, 20, 1, 0, 255);

// pass in Ki, Kp, Kd, and sat

pid* alti_control = new pid(p_serial, 3, 0, 0, 255);

// initialize

55 int16_t diff = 0;

int16_t des_power = 0;

for (;;)

{

60 switch (state) // run FSM, ’state’ is kept

by parent class

{

//

A.2 task control 39

// state check_diff determines whether or

not power needs to be set in either

azim or alti

case (check_diff):

65 {

diff = desired_azim_pos->get() -

current_azim_pos->get();

// diff represents how

far motor needs to turn

if (diff > 0)

{

transition_to(azim_power)

;

70 }

diff = desired_alti_pos->get() -

current_alti_pos->get();

else if (diff > 0)

75 {

transition_to(alti_power)

;

}

}

break; // end state check_diff

80

//

// state azim_power determines and sets

power for azimuth motor

case (azim_power):

{

85 des_power = azim_control->action(

diff);

//

PID calculated power to turn

motor efficiently

azim_motor->set_power(des_power);

// sets the motor

delay_ms(25);

//

breaks to do something else

for a bit

transition_to (check_diff);

}

90 break; // end state azim_power

A.2 task control 40

//

// state alti_power determines and sets

power for altitude motor

case (alti_power):

95 des_power = alti_control->action(

diff);

alti_motor->set_power(des_power);

transition_to (check_diff);

break; // end state alti_power

}

100 // PID debugging//

// *ptr_serial_ctrl << "Current azimuth pos: " <<

current_azim_pos->get() << endl;

// *ptr_serial_ctrl << "Desired azimuth pos: " <<

desired_azim_pos->get() << endl;

// *ptr_serial_ctrl << "Calculated difference: " <<

diff << endl << "***********************" << endl << endl;

105 // pure encoder debugging

// *ptr_serial_ctrl << "***********************" <<

endl << "Power sent to motors: " << des_power << endl;

// *ptr_serial_ctrl << "C " << current_azim_pos->get

();

// *ptr_serial_ctrl << "D " << desired_azim_pos->get

();

// *ptr_serial_ctrl << "e " << azim_error->get();

110

delay_from_for_ms (previousTicks, (10));

}

}

//

**

2 /** @file task_control.h

* This file contains the header for a task class that creates

objects of motor,

* encoder, and PID classes and accomplishes PID control

with these objects

*/

//

**

7

// prevents mutiple inclusions

#ifndef _task_control_H_

#define _task_control_H_

12 #include <stdlib.h> // prototype

declarations for I/O functions

A.2 task control 41

#include <avr/io.h> // header for special

function registers

#include "FreeRTOS.h" // primary header for

FreeRTOS

#include " task .h" // header for

FreeRTOS task functions

17 #include "queue.h" // FreeRTOS inter-

task communication queues

#include " taskbase .h" // ME405/507 base

task class

#include "time_stamp.h" // class to implement

a microsecond timer

#include "taskqueue .h" // header of wrapper

for FreeRTOS queues

22 #include " taskshare .h" // header for thread-

safe shared data

#include "shares .h" // global (’extern’)

queue declarations

#include " rs232int .h" // ME405/507 library

for serial comm.

#include "adc .h" // header for A/D

converter driver class

27 #include "encoderdriver .h"
// encoder initialization and interrupts

#include "pid .h"
// pid control and creation of encoder objects

#include "motordrive .h"
// motor initialization and power setting

32 //

/** @brief This task controls the motors

* @details This task uses interrupts generated from an optical

encoder to determine the

* location of a motor and it uses PID

control to move the motor to desired

* positions in a timely manner.

37 */

class task_control : public TaskBase

{

private:

42 emstream* ptr_serial_ctrl;

protected:

// No protected variables or methods for this class

A.3 class pid 42

47 public:

// This constructor creates a generic task of which many

copies can be made

task_control (const char*, unsigned portBASE_TYPE, size_t

, emstream*);

// This method is called by the RTOS once to run the task

loop for ever and ever.

52 void run (void);

};

#endif // _task_control_H_

a.3 class pid

//

/** @file pid.cpp

* This file outlines a class for PID control.

*/

5 //

#include <stdlib.h> // standard library

header files

#include <avr/io.h>

#include " rs232int .h" // serial port class

10 #include "pid .h" // pid class

#define imin_diff 20

// minimum difference to warrant integral accumulation

//

/** \brief This constructor constructs on object of the pid class

15 * \details This constructor saves the passed in proportional,

integral, derivative,

* and saturation limit constants to

variables in the pid class, and initalizes,

* the integral variable to 0.

* @param Kp_in Proportional control constant

* @param Ki_in Intgeral control constant

20 * @param Kd_in Derivative control constant

* @param sat_in Power saturation limit constant

*/

25 pid::pid (emstream* p_serial_port, uint16_t Kp_in, uint16_t Ki_in

, uint16_t Kd_in, uint16_t sat_in)

A.3 class pid 43

{

ptr_serial_pid = p_serial_port;

Kp = Kp_in; // stores derivative gain

constant

Ki = Ki_in; // stores integral gain constant

30 Kd = Kd_in; // stores derivative gain

constant

prev_diff = 0; // used for calculating differince in

error

sat = sat_in; // stores saturation limit

iaccumulate = 0; // initalize integral once

act = 0;

35 }

//

/** @brief This method determines desired amount of power to

send to motor

40 * @details This method takes in a variable that represents how

far away the desired

* location is and then decides how much

power (@act) to send to the motor of

* this specific object to get to that

desired location

* @param diff This parameter represents how far away the

desired position is

*/

45

int16_t pid::action (int16_t diff)

{

int8_t isat = sat/Ki;

int16_t proportional = (diff*Kp); // calc

proportional factor

50

if (((diff > imin_diff) || (diff < -imin_diff)) && (act >

-sat) && (act < sat))

{

iaccumulate += diff; // only occurs if

diff is substantial and if act is not

saturated (mitigates windup)

if (iaccumulate > isat) // further mitigates

windup

55 iaccumulate = isat;

else if (iaccumulate < -isat)

iaccumulate = -isat;

}

60 int16_t integral = iaccumulate*Ki;

int16_t derivative = (diff-prev_diff)*Kd;

A.3 class pid 44

act = proportional + integral + derivative; // calculate

desired output power

65 if (act > sat)

// ensures action isn’t

larger than the max power we can give the motor

act = sat;

else if (act < -sat)

act = -sat;

prev_diff = diff;

70

return act;

}

//

==

/** @file pid.h

3 * This file contains pid control

*/

//

==

// This define prevents this .H file from being included multiple

times in a .CPP file

8 #ifndef _pid_h_

#define _pid_h_

#include "emstream.h" // Header for serial

ports and devices

#include "FreeRTOS.h" // Header for the

FreeRTOS RTOS

13 #include " task .h" // Header for

FreeRTOS task functions

#include "queue.h" // Header for

FreeRTOS queues

#include "semphr.h" // Header for

FreeRTOS semaphores

//

/** @brief This class runs handles pid control.

18 * @details This class takes in the difference between where we

want to motor to be and

* where it is. From this it calculates,

combines and returns proportional, integral,

* and derivative values that are optimized to get the

motor to the desired position

* in a timely manner.

*/

23

class pid

A.4 class encoder 45

{

protected:

emstream* ptr_serial_pid; // pointer to

serial port for printing

28 uint16_t Kp; //

constant for proportional control

uint16_t Ki; //

ditto for integral

int16_t prev_diff;

uint16_t Kd; //

ditto for derivative

int16_t sat; //

saturation limit of power to motor

33 int16_t iaccumulate;

int16_t act;

public:

// sets up the pid for use

38 pid (emstream* p_serial_port, uint16_t Kp_in,

uint16_t Ki_in, uint16_t Kd_in, uint16_t

sat_in);

// determines action based on passed in

difference

int16_t action (int16_t diff_in);

}; // end of class pid

43

#endif // _pid_h_

a.4 class encoder

1 //

/** @file encoderdriver.cpp

* This file contains code that initializes pins to interrupt

for optical encoding

* and it includes two ISR for each encoder class that’s

created (this project will

* use two encoders so 4 ISR’s are defined. The ISR

contains the logic necessary

6 * to determine which direction the motor is spinning

whcih also enables the velocity

* to be calculated.

*/

//

11 #include <stdlib.h> // standard library header

files

A.4 class encoder 46

#include <avr/io.h>

#include " rs232int .h" // serial port class

#include "encoderdriver .h" // encoder class

16 //

/** \brief This constructor sets up the interrupt for the

optical encoder

* \details This constructs passes in everything needed to

initialize 2 pins to interrupt

* based on signals from an optical encoder

.

* @param p_serial_encoder The serial port to output language

to a terminal

21 */

encoder::encoder(emstream* p_serial_port_in)

{

p_serial_encoder = p_serial_port_in; // tedium

incarnate

26

// initializes current known positions of both encoders

to 0

current_azim_pos->put(0);

current_alti_pos->put(0);

31 // initializes previous channel logic level of each

encoder to the logic level of each respective pin

prev_azim_ch1->put(PIND & (1<<PIND0));

prev_azim_ch2->put(PIND & (1<<PIND1));

prev_alti_ch1->put(PIND & (1<<PIND2));

prev_alti_ch2->put(PIND & (1<<PIND3));

36

// this code attempts to set up D0-3 for ext interrupts

but it causes the entire fucking universe to implode

EICRA |= ((1 << ISC00) | (1 << ISC10) | (1 << ISC20) | (1

<< ISC30));

EIMSK |= ((1 << INT0) | (1 << INT1) | (1 << INT2) | (1 <<

INT3));

DDRD &= ~((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3));

41 }

//

/** @brief This method increments or decrements a shared

variable depending on the direction

46 * the motor turns.

* @details This method compares prev_azim_ch1 and prev_azim_ch2

to chA and chB for use in calculating

A.4 class encoder 47

* the velocity the motor is spinning at,

and it also updates the shared variable

* current_azim_pos, through a define, that

allows the relative location of the motor to be

* determined. Each two consequtive ISR’s

represent a respective motor, handeld by respective

51 * shared variables that are abstracted

with respective defines. Comments on the logic will only

* be made on the first ISR, to minimize

repetitiveness.

*/

ISR (INT0_vect)

// interrupts on D0 for azimuth

56 {

bool chA = (PIND & (1 << PIND0));

// reads current encoder logic lvl on PIND0

bool chB = (PIND & (1 << PIND1));

// reads current encoder logic lvl on PIND1

if ((chA != chB) | (prev_azim_ch1->ISR_get() ==

prev_azim_ch2->ISR_get()))

61 {

current_azim_pos->ISR_put(current_azim_pos->

ISR_get() + 1); // motor spinning right

}

else if ((chA == chB) | (prev_azim_ch1->ISR_get() !=

prev_azim_ch2->ISR_get()))

{

66 current_azim_pos->ISR_put(current_azim_pos->

ISR_get() - 1); // motor spinning left

}

if ((chA == prev_azim_ch1->ISR_get()) && (chB ==

prev_azim_ch2->ISR_get()))

{

azim_error->ISR_put(azim_error->ISR_get() + 1);

// error condition,

an encoder signal was missed

71 }

else if ((chA != prev_azim_ch1->ISR_get()) && (chB !=

prev_azim_ch2->ISR_get()))

{

azim_error->ISR_put(azim_error->ISR_get() + 1);

// error condition, an

encoder signal was missed

}

76 prev_azim_ch1->ISR_put(chA);

// updates

shared variables for use in next ISR

prev_azim_ch2->ISR_put(chB);

}

A.4 class encoder 48

ISR (INT1_vect)

// interrupts on D1 for azimuth

81 {

bool chA = (PIND & (1 << PIND0));

// reads current encoder logic lvl on PIND0

bool chB = (PIND & (1 << PIND1));

// reads current encoder logic lvl on PIND1

if ((chA == chB) | (prev_azim_ch1->ISR_get() !=

prev_azim_ch2->ISR_get()))

86 {

current_azim_pos->ISR_put(current_azim_pos->

ISR_get() + 1);

}

else if ((chA != chB) | (prev_azim_ch1->ISR_get() ==

prev_azim_ch2->ISR_get()))

{

91 current_azim_pos->ISR_put(current_azim_pos->

ISR_get() - 1);

}

if ((chA == prev_azim_ch1->ISR_get()) && (chB ==

prev_azim_ch2->ISR_get()))

{

azim_error->put(azim_error->ISR_get() + 1);

96 }

else if ((chA != prev_azim_ch1->ISR_get()) && (chB !=

prev_azim_ch2->ISR_get()))

{

azim_error->ISR_put(azim_error->ISR_get() + 1);

}

101 prev_azim_ch1->ISR_put(chA);

prev_azim_ch2->ISR_put(chB);

}

ISR (INT2_vect)

// interrupts on D2 for altitude

106 {

bool chA = (PIND & (1 << PIND2));

// reads current encoder logic lvl on PIND2

bool chB = (PIND & (1 << PIND3));

// reads current encoder logic lvl on PIND3

if ((chA != chB) | (prev_alti_ch1->ISR_get() ==

prev_alti_ch2->ISR_get()))

111 {

current_alti_pos->ISR_put(current_alti_pos->

ISR_get() + 1);

}

else if ((chA == chB) | (prev_alti_ch1->ISR_get() !=

prev_alti_ch2->ISR_get()))

{

A.4 class encoder 49

116 current_alti_pos->ISR_put(current_alti_pos->

ISR_get() - 1);

}

if ((chA == prev_alti_ch1->ISR_get()) && (chB ==

prev_alti_ch2->ISR_get()))

{

alti_error->ISR_put(alti_error->ISR_get() + 1);

121 }

else if ((chA != prev_alti_ch1->ISR_get()) && (chB !=

prev_alti_ch2->ISR_get()))

{

alti_error->ISR_put(alti_error->ISR_get() + 1);

}

126 prev_alti_ch1->ISR_put(chA);

prev_alti_ch2->ISR_put(chB);

}

ISR (INT3_vect)

// interrupts on D3 for altitude

131 {

bool chA = (PIND & (1 << PIND2));

// reads current encoder logic lvl on PIND2

bool chB = (PIND & (1 << PIND3));

// reads current encoder logic lvl on PIND3

if ((chA == chB) | (prev_alti_ch1->ISR_get() !=

prev_alti_ch2->ISR_get()))

136 {

current_alti_pos->ISR_put(current_alti_pos->

ISR_get() + 1);

}

else if ((chA != chB) | (prev_alti_ch1->ISR_get() ==

prev_alti_ch2->ISR_get()))

{

141 current_alti_pos->ISR_put(current_alti_pos->

ISR_get() - 1);

}

if ((chA == prev_alti_ch1->ISR_get()) && (chB ==

prev_alti_ch2->ISR_get()))

{

alti_error->put(alti_error->ISR_get() + 1);

146 }

else if ((chA != prev_alti_ch1->ISR_get()) && (chB !=

prev_alti_ch2->ISR_get()))

{

alti_error->ISR_put(alti_error->ISR_get() + 1);

}

151 prev_alti_ch1->ISR_put(chA);

prev_alti_ch2->ISR_put(chB);

}

A.4 class encoder 50

//

**

2 /** @file encoderdriver.h

* This file contains the header for an optical encoder.

*/

//

**

7 // This define prevents this .h file from being included multiple

times in a .cpp file

#ifndef _encoder_h_

#define _encoder_h_

#include "emstream.h" // Header for serial

ports and devices

12 #include "FreeRTOS.h" // Header for the

FreeRTOS RTOS

#include " task .h" // Header for

FreeRTOS task functions

#include "queue.h" // Header for

FreeRTOS queues

#include "semphr.h" // Header for

FreeRTOS semaphores

17 #include <avr/interrupt.h>

#include " taskbase .h" // ME405/507 base

task class

#include "time_stamp.h" // Class to implement

a microsecond timer

#include "taskqueue .h" // Header of wrapper

for FreeRTOS queues

22 #include "textqueue .h" // Header for a "<<"

queue class

#include " taskshare .h" // Header for thread-

safe shared data

#include "shares .h"

//

27 /** @brief This class reads from an optical encoder.

* @details The class uses AVR chip ports as inputs from the

optical motor encoder and

* generates directional/positional record

of motion, using ISR’s

*/

32 class encoder

{

A.5 class motor 51

protected:

emstream* p_serial_encoder;

// pointer to allow communication

37 public:

encoder (emstream* p_serial_port);

void calc_vel(void);

// calculates velocity

};

#endif // _encoder_h_

a.5 class motor

//

/** @file motordrive.cpp

* This file contains a motor driver

4 */

//

#include <stdlib.h> // Include standard

library header files

#include <avr/io.h>

9 #include " rs232int .h" // Include header for

serial port class

#include "motordrive .h" // Include header for

the motordrive class

//

/** \brief This constructor sets up a motor driver.

14 * \details The communications lines between the microcontroller

and the motordriver

* that allows the motor to make turns

* @param is_azim_motor_in This bool determines whether the

first or third timer is configured

* @param tc_outpin_in Timer compare output for 1 pin

* @param tc_outpin_in2 Timer compare output for second pin

19 * @param p_OCR_in Address of firt PWM output compare register

* @param p_OCR_in2 Address of second PWM output compare

register

* @param p_serial_port A pointer to the serial port which

writes debugging info.

*/

24

A.5 class motor 52

motordrive::motordrive (bool is_azim_motor_in, uint8_t

tc_outpin_in, uint8_t tc_outpin_in2, volatile uint16_t*
p_OCR_in,

volatile uint16_t

* p_OCR_in2,

emstream*
p_serial_port

)

{

tc_outpin = tc_outpin_in;

// pwm for "pos" motor direction

29 tc_outpin2 = tc_outpin_in2; // pwm pin for

"neg" motor direction

p_OCR = p_OCR_in; // pointer to

first output compare register

p_OCR2 = p_OCR_in2;

// pointer to second output compare

register

is_azim_motor = is_azim_motor_in; //

dependent on which motordriver to construct

34 ptr_to_serial = p_serial_port; // inputted

serial point pointer saved to permenant variable

if (is_azim_motor == 1)

// sets up pwm on pins 11 and 12

{

DDRB |= (1 << tc_outpin); // set output

compareA/B for timer 1

39 DDRB |= (1 << tc_outpin2); // set output

compareA/B for timer 1

TCCR1A |= (1 << WGM10); // set fast pwm

in timer/counter

TCCR1B |= (1 << WGM12);

TCCR1B |= (1 << CS11) | (1 << CS10); // set

prescaler for timer/counter at /64

44

TCCR1A |= (1 << COM1B1);

TCCR1A &= ~(1 << COM1B0);

TCCR1A |= (1 << COM1A1);

TCCR1A &= ~(1 << COM1A0);

49 }

else

// sets up pwm on pins 2 and 5

{

DDRE |= (1 << tc_outpin); // set output

compareA/B for timer 3

54 DDRE |= (1 << tc_outpin2);

A.5 class motor 53

TCCR3A |= (1 << WGM30); // set fast pwm

in timer/counter

TCCR3B |= (1 << WGM32);

TCCR3B |= (1 << CS31) | (1 << CS30); // set

prescaler for timer/counter at /64

59

TCCR3A |= (1 << COM3B1); // sets pwm so

0 is "on" and 1 is "off" for motor 1

TCCR3A &= ~(1 << COM3B0);

TCCR3A |= (1 << COM3A1);

TCCR3A &= ~(1 << COM3A0);

64 }

brake(); // sets pwm to

0 for start-up

}

69

//

/** @brief This method sets the direction and PWM power of a

motor

* @details Takes a 16 bit signed number and uses it as power

PWM of the motor

* @param power Signed motor power input

74 */

void motordrive::set_power (int16_t power)

{

if(power >= 0)

79 {

*p_OCR2 = 0; // turn

off half the H-brdige

*p_OCR = power; // PWM

the other half at power

}

else if(power < 0)

84 {

*p_OCR = 0; //

turn off other half (direction control)

p_OCR2 = power(-1); // PWM the other

other half at power

}

return;

89 }

//

/** @brief This method brakes the motor

A.5 class motor 54

94 * \details Brakes the motor by setting PWM to 0

*/

void motordrive::brake ()

99 {

// sets power to 0

*p_OCR = 0;

*p_OCR2 = 0;

return;

104 }

1 //

==

/** @file motordrive.h

* This file contains a motor driver for the ME 405 board and

allows

* the control of up to two motors by the onboard drivers.

*/

6 //

==

// This define prevents this .H file from being included multiple

times in a .CPP file

#ifndef _motor_h_

#define _motor_h_

11

#include "emstream.h" // Header for serial

ports and devices

#include "FreeRTOS.h" // Header for the

FreeRTOS RTOS

#include " task .h" // Header for

FreeRTOS task functions

#include "queue.h" // Header for

FreeRTOS queues

16 #include "semphr.h" // Header for

FreeRTOS semaphores

//

/** @brief This class runs the onboard motor drivers on the ME

405 board.

* @details Motor driver interface. Allows control of a motor on

each of the

* two drivers on board. Setting power in an 16 bit

signed number or braking

21 * in an 8 bit unsigned number.

*/

class motordrive

{

A.6 class adc 55

26 protected:

emstream* ptr_to_serial; // pointer to

serial port for printing

volatile uint16_t* p_OCR; // address of pwm

output to chip (duty cycle)

volatile uint16_t* p_OCR2; // address of pwm

output to chip (duty cycle)

uint8_t tc_outpin; // timer control

output

31 uint8_t tc_outpin2; // timer control

output

bool is_azim_motor;

public:

// The constructor sets up the motordrive for use

.

36 // emstream* parameter is used to specify which

serial to print debugging

// info to

motordrive (bool is_azim_motor_in, uint8_t

tc_outpin_in, uint8_t tc_outpin2, volatile

uint16_t* p_OCR_in,

volatile uint16_t*
p_OCR_in2, emstream*
p_serial_port);

41 // This function sets the power of a specified

motor, as a signed 16 bit number

void set_power (volatile int16_t power);

// This function sets the braking of a specified

motor, as a signed 8 bit number

void brake ();

46 }; // end of class motordrive

#endif // _motor_h_

a.6 class adc

//

2 /** @file adc.cpp

* This file contains a very simple A/D converter driver.

*/

//

7 #include <stdlib.h> // Include standard

library header files

A.6 class adc 56

#include <avr/io.h>

#include " rs232int .h" // Include header for

serial port class

#include "adc .h" // Include header for

the A/D class

12 //

/** \brief Constuctor sets up an A/D converter.

* \details The A/D is made ready so that when a method such as

@c read_once() is

* called, correct A/D conversions can be performed

.

* @param p_serial_port A pointer to the serial port which

writes debugging info.

17 */

adc::adc (emstream* p_serial_port)

{

ptr_to_serial = p_serial_port;

22

ADCSRA |= (1<<ADEN); // set the ADC enable bit, ADEN

ADCSRA &= 0b11111000; // clear the last three bits of

ADCSRA before setting the prescaler

ADCSRA |= 0b00000101; // set the clock prescaler to a

division of 32

ADMUX |= (1<<REFS0); // set the reference as AVCC with

external cap at AREF pin

27 }

//

/** @brief This method takes one A/D reading from the given

channel and returns it.

32 * @details This reads and concatenates the values in the high

and low registers of the A/D

* @param ch The A/D channel which is being read must be from

0 to 15

* @param even_more_adc A bool that allows ADCs 7 through 15

to be read

* @return The result of the A/D conversion

*/

37

uint16_t adc::read_once (uint8_t ch, bool even_more_adc)

{

uint8_t timeout = 200; //

appropiate timeout value that allows standard

conversions

A.6 class adc 57

ADMUX &= 0b11000000; // clears

the ADMUX channel selection bits

42 ADCSRB &= (1 << MUX5);

ADCSRB |= (even_more_adc << MUX5); // set for ADCs

7-15

ADMUX |= ch; // sets

the ADMUX channel selection bits

ADCSRA |= (1<<ADSC); // starts ADC

conversion

47 while (ADCSRA&(1<<ADSC) && timeout != 0)

{

timeout--; // waits for end of

conversion or timeout

}

52 if (timeout == 0) // tells user if timed out

DBG (ptr_to_serial, "ADC time out"<< endl);

return ADCL + (ADCH << 8); // returns a concatenated

conversion value

}

57

//

/** @brief This averages the A/D channel output.

* \details This calls read_once and averages them over the

number of times specied by samples

62 * @param channel Specifies channel number

* @param samples Specifies the number of samples to take

* @param even_more_adc Decides whether first 8 or last 8

ADCs are initialized in read_once

* @return An average of the A/D samples

*/

67

uint16_t adc::read_oversampled (uint8_t channel, uint8_t samples,

bool even_more_adc)

{

uint16_t average = 0;

72 if (samples > 64) // limits sample

size to 64 and gives warning

{

DBG (ptr_to_serial, " limited to 64 samples"<<
endl);

samples = 64;

}

77

for (uint8_t counter = samples; counter > 0; counter--)

{

A.6 class adc 58

average += adc::read_once(channel, even_more_adc)

; // adds up the requested samples

}

82

average = average/samples; // divides by

number of samples

return (average);

}

//

==

/** @file adc.h

* This file contains a very simple A/D converter driver. The

driver is hopefully

* thread safe in FreeRTOS due to the use of a mutex to

prevent its use by multiple

5 * tasks at the same time. There is no protection from

priority inversion, however,

* except for the priority elevation in the mutex.

*/

//

==

10 #ifndef _adc_h_

// prevents multiple inclusions

#define _adc_h_

#include "emstream.h" // Header for serial

ports and devices

#include "FreeRTOS.h" // Header for the

FreeRTOS RTOS

15 #include " task .h" // Header for

FreeRTOS task functions

#include "queue.h" // Header for

FreeRTOS queues

#include "semphr.h" // Header for

FreeRTOS semaphores

//

20 /** @brief This class runs the A/D converter on an AVR

processor.

* @details This is the header for the class that runs an A/D

converter and it passes

* a means of communicating and some method

prototypes for reading the ADC

* once and more than once.

*/

25

class adc

A.6 class adc 59

{

protected:

emstream* ptr_to_serial; // pointer that

allows printing

30

public:

// The constructor sets up the A/D converter for

use. The "= NULL" part is a

// default parameter, meaning that if that

parameter isn’t given on the line

// where this constructor is called, the compiler

will just fill in "NULL".

35 // In this case that has the effect of turning

off diagnostic printouts

adc (emstream* = NULL);

// This function reads one channel once,

returning the result as an unsigned

// integer; it should be called from within a

normal task, not an ISR

40 uint16_t read_once (uint8_t, bool);

// This function reads the A/D lots of times and

returns the average. Doing so

// implements a crude sort of low-pass filtering

that can help reduce noise

uint16_t read_oversampled (uint8_t, uint8_t, bool

);

45

};

#endif // _adc_h_

	Contents
	List of Figures
	Acronyms and Abbreviations
	Design
	1 Introduction
	1.1 Background Information
	1.2 Design Motivation
	1.3 Target Customer Description

	2 Specifications
	3 Hardware Design
	3.1 Brainstorming
	3.2 Solid Modelling
	3.3 Simulation
	3.4 Optical Assembly
	3.5 Electrical Hardware
	3.5.1 Microcontroller
	3.5.2 Encoder Front End
	3.5.3 Motor Driver

	3.6 Manufacturing

	4 Software Design
	4.1 Ideation
	4.2 Task Diagram
	4.2.1 Task Seekill Finite State Machine
	4.2.2 Task Control FSM

	Results
	5 Results
	5.1 Specification Evaluation
	5.2 V2
	5.2.1 Mechanical Design
	5.2.2 Electrical Design
	5.2.3 Sensor Design
	5.2.4 Program Design

	Appendix
	A Code
	A.1 Task Seekill
	A.2 Task Control
	A.3 Class PID
	A.4 Class Encoder
	A.5 Class Motor
	A.6 Class ADC

